# 메뉴얼 레이더 레벨 전송기 80G FMCW









# 코리올리 질량유량계

# 목차

| 1. 제품소개                 | 1  |
|-------------------------|----|
| 2. 기술사양                 | 2  |
| 3. 치수                   | 3  |
| 4. 설치                   | 4  |
| 5. 배선                   | 6  |
| 5.1 단일챔버 하우징 24V DC 2선식 | 6  |
| 5.2 단일챔버 하우징 24V DC 4선식 | 6  |
| 6. 기기작동                 | 7  |
| 6.1 키보드 설명              | 7  |
| 6.2 측정 인터페이스 지침         | 7  |
| 6.3 에코파 인터페이스 지침        | 8  |
| 6.4 설정 인터페이스 지침         | 8  |
| 6.4.1 기본설정              | 9  |
| 6.4.2 고급 설정             | 9  |
| 6.4.3 디스플레이             | 10 |
| 6.4.4 진단                | 10 |
| 6.4.5 정보                | 10 |
| 6.5 메뉴옵션(주요 매개변수)       | 11 |
| 6.5.1 기본 설정 메뉴          | 11 |
| 6.5.2 고급 설정 메뉴          | 15 |
| 7. 메뉴 트리                |    |
| 7.1 첫번째 레벨 메뉴 트리        | 19 |
| 7.2 보조메뉴 트리 - 기본설정      | 19 |
| 7.3 보조메뉴 트리 - 고급설정      | 20 |
| 7.4 보조메뉴 트리 - 디스플레이     | 21 |
| 7.5 보조메뉴 트리 - 진단        | 21 |
| 7.6 보조메뉴 트리 - 정보        | 22 |
| 8. 선택표                  |    |
| 9. 부록A : 오류코드           |    |
| 10. 부록B : 용어            | 26 |

# Solden Rales

#### 80G FMCW 레이더 레벨 전송기

#### 1. 제품소개

GRL-8000은 76-81 GHz에서 작동하는 FMCW 레이더로 최대 측정 범위 120m, 최소 사각지대 8cm를 제공하며, 4선식 및 2선식 어플리케이션을 지원합니다. 작동 주파수와 짧은 파장 덕분에 극한의 먼지와 최대 +1200℃의 고온을 포함한 고체 응용 분야에 이상적입니다. 레이더는 렌즈 안테나와 플랜지에 연결된 전자 회로로 구성되어 빠르고 쉬운 위치 조정이 가능합니다

낮은 주파수를 사용하는 장치보다 80GHz를 사용하는 주요 이점은 아래와 같습니다.

- 자체 개발한 CMOS 밀리미터파 RF 칩을 기반으로, 더욱 컴팩트한 RF 아키텍처, 더 높은 신호 대 잡음비, 더 작은 사각지대를 실현했습니다.
- 5GHz 작업 대역폭은 더 높은 측정 분해능과 정확도를 의미합니다.
- 안테나 빔 각도가 3°이므로 주변 환경의 간섭이 기기에 미치는 영향이 적고 설치가 더욱 편리합니다.
- 파장이 짧을수록 경사진 고체에서 좋은 반사 특성을 나타내므로 일반적으로 재료의 휴식각을 목표로 삼을 필요는 없습니다.
- 현장 인력 비용을 줄이기 위해 원격 디버깅 및 원격 업그레이드를 지원합니다.

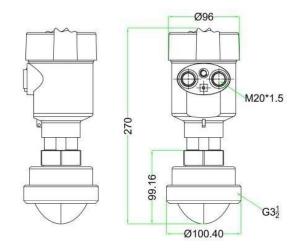
#### 커뮤니케이션 및 프로그래밍

디버깅은 현장의 LCD를 통해 수행할 수도 있고, PC의 소프트웨어를 통해 수행할 수도 있습니다.

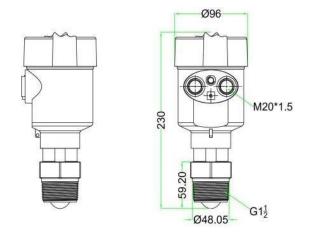
DAR-8X와 PC 간의 통신은 다음과 같은 방법으로 이루어질 수 있습니다.

- 1. SB에서 RS485 직렬 회선(4선)으로;
- 2. USB-TTL 직렬 회선(2선):
- 3. USB-Hart 모뎀(2선식).

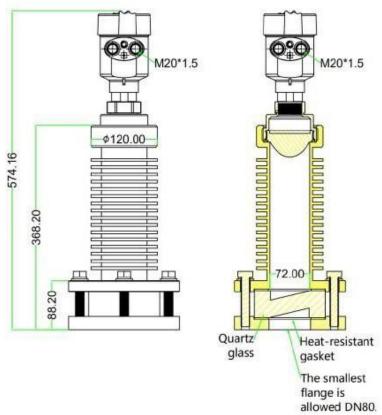
또한 모바일 기기를 통한 블루투스 디버깅을 옵션으로 지원하여 훨씬 쉽고 편리합니다. 또한 4G 네트워크를 통해 원격 디버깅도 가능합니다.




# 2. 기술사양


| 주파수         | 76GHz ~ 81GHz, 5GHz FMCW 대역폭                                          |
|-------------|-----------------------------------------------------------------------|
| 측정 범위       | 0.08 m ~ 30m (액체)<br>0.3m ~ 60m<br>0.6m ~ 120m                        |
| 측정 정확도      | ±1mm                                                                  |
| 빔 각도        | 3°/8°                                                                 |
| 최소 측정유전율    | >=2                                                                   |
| Power       | 15~28VDC 2-선식                                                         |
| 의사소통        | HART                                                                  |
| 신호 출력       | 4 ~ 20mA                                                              |
| 오류 출력       | 3.8mA, 4mA, 20mA, 21mA, hold                                          |
| 현장 작동/프로그래밍 | 128 × 64 dot matrix display / 4 buttons<br>PC소프트웨어 Blu<br>etooth (옵션) |
| 습도/온도       | 81:-40~85°C < = 95%RH ; 8T: -40~1200°C                                |
| 인클로저        | 알루미늄 합금                                                               |
| 안테나 유형      | 렌즈 안테나, 안테나 커버 장착 가능 / 부식 방지 안테나<br>/ 석영으로 절연된 플랜지                    |
| 공정 압력       | -0.1~20MPa                                                            |
| 제품 크기       | Ø100*270mm                                                            |
| 케이블 진입      | M20*1.5                                                               |
| 권장케이블       | AWG18 or 0.75mm <sup>2</sup>                                          |
| 보호 등급       | IP68                                                                  |
| 방폭등급        | ExdialICT6                                                            |
| 설치 방법       | 나사산 또는 플랜지                                                            |
| 무게          | 2.480Kg/2.995Kg                                                       |
| 포장 상자 크기    | 370*270*180mm                                                         |




# 3. 치수

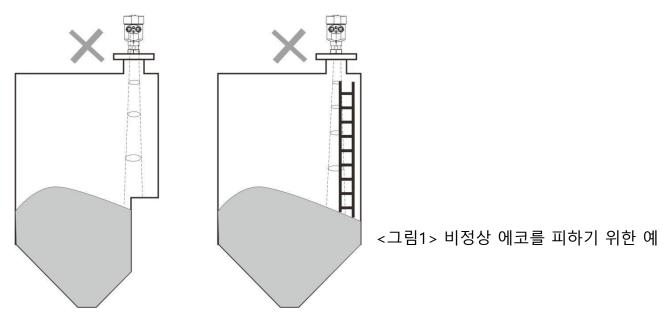


<그림1> DAR81 with 3° antenna beamwidth

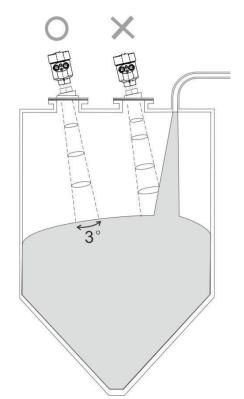


<그림2> DAR80 with 8° antenna beamwidth




<그림3> DAR82/8T for high temperature

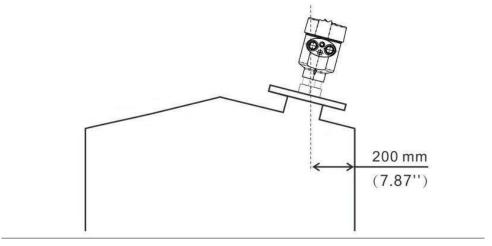



## 4. 설치

설치 시 가장 중요한 점은 재료 표면에 수직으로 설치하고, 다른 한편으로는 비정상에 기료를 방지하는 것입니다. 올바른 설치를 위한 일반적인 설치 장소는 아래와 같습니다.

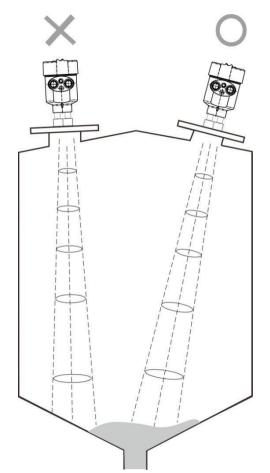
■ 그림 1과 같이 사다리, 파이프, 계단 등 안테나 빔의 방해물이 없도록 해주십시오




■ 그림 2와 같이 안테나 빔과 공급 흐름 사이의 접촉을 피하십시오.



<그림2> 비정상 에코를 피하기 위한 예


# 4. 설치

■ 비정상 에코와 측정 실수를 방지하려면 벽으로부터 최소 200mm 떨어뜨려야 합니다.



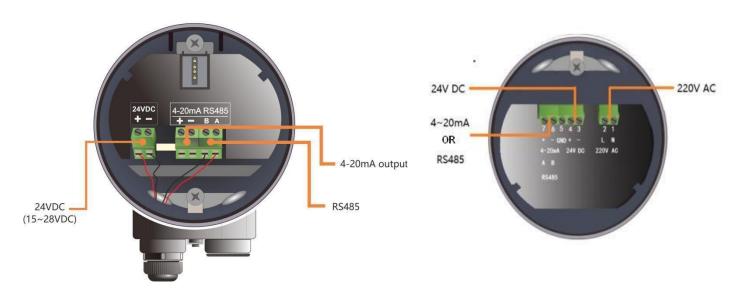
<그림3> 비정상 에코를 피하기 위한 예

■ 수위가 테이퍼형 용기의 바닥에 있을 때 비정상 에코가 발생하는 것을 방지하기 위해 안테나 빔을 테이퍼형 용기의 바닥으로 조준합니다.



<그림4> 비정상 에코를 피하기 위한 예




## 5. 배선

#### 5.1 2선제품

2선의 경우, 기존 4-20mA 단자 외에도 직렬 단자를 제공하여 인기 있는 IoT 제품과의 연결이 더욱 쉬워지고 원격 제어가 가능해졌습니다.



#### 5.2 4선제품



<그림6> 24VDC 배선도

<그림7> 220VAC or 24VDC



#### 6. 기기작동

설정에 따라 수위 측정 작업을 수행하며, 이 설정은 로컬 디스플레이 모듈(LDM)을 통해로컬에서 수정할 수 있습니다. LDM은 4개의 푸시 버튼이 있는 LCD(128\*64도트 매트릭스)로 구성됩니다.

#### 6.1 키보드 설명

시스템은 5가지 작동 모드 인터페이스를 제공 :

[Run mode] : 시스템 실행 상태와 현재 측정 결과를 표시

[Echo mode]: 실시간으로 측정된 에코 곡선을 표시

[History Mode] : 레이더에 의해 기록된 과거 측정 데이터를 표시

[Setup Mode] : 다양한 시스템 매개변수를 설정 [Input Mode] : 매개변수의 입력 값, 숫자 또는 문자

4개 키의 기능은 모드에 따라 달라집니다.

#### 6.2 측정 인터페이스 지침

측정 인터페이스는 아래와 같습니다

| Keyboard | 기능           |
|----------|--------------|
| ESC      | 에코 인터페이스로 전환 |
| UP       | 무효           |
| DN       | 무효           |
| ENT      | 설정 인터페이스로 전환 |

<표1>

- 1) 통신 상태: 시스템 통신 상태의 핵심 1초에 1회 이상 발생하는 경우 장치가 정상적으로 작동하고 있음을 의미하며, 그렇지 않은 경우 장치에 이상이 있음을 의미.
- 2) 실시간 데이터: 센서와 매체 표면 사이의 거리로부터 변환된 실시간 측정 결과
- 3) 단위: 시스템 측정 단위.
- 4) 온도 : 신호 처리 보드의 온도.
- 5) 전류: 고/저 교정점 및 전류 기능 설정에 따라 얻어지는 이상적인 4-20mA 전류 출력 값.
- 6) 버전 번호 : 제품의 모델 번호.
- 7) 오류 코드: 부록 A에 명시.





#### 6.3 에코파 인터페이스 지침



<그림9>Echo 인터페이스 개요

| keyboard | 기능            |
|----------|---------------|
| ESC      | 측정 인터페이스로 전환  |
| UP       | 에코 강도 단위를 전환  |
| DN       | TVT 곡선 표시/숨기기 |
| ENT      | 무효            |

<표2> 에코인터페이스키 기능

측정 인터페이스에서 [ESC] 키를 눌러 에코 인터페이스로 들어가세요.

에코 인터페이스:t는 측정 범위에서 최대 에코 강도(알고리즘에 의해 선택된 에코 강도가 아닐 수도 있음)를 나타냅니다. 금속판의 경우, 에코 강도는 약 70dB이어야 합니다. 에코 강도가 30dB 미만이면 피측정 재료의 반사가 매우 약함을 의미합니다.

#### 6.4 설정 인터페이스 지침

아래 그림과 같이 [ENT]를 눌러 측정 인터페이스에서 설정 인터페이스로 전환합니다.



<그림10>

| keyboard | 기능              |
|----------|-----------------|
| ESC      | 측정 인터페이스로 전환/종료 |
| UP       | 위로 이동           |
| DN       | 아래로 이동          |
| ENT      | 확인              |

<표3>

## 6.4.1 기본설정

[기본] 메뉴에는 아래 표와 같이 레벨미터를 빠르게 시작하는 데 필요한 기능이 포함되어 있습니다. 기본 설정을 선택한 후 ENT를 눌러 다음 단계로 진입하세요.

| 기본 | 메뉴 항목         |
|----|---------------|
|    | 선박 유형         |
|    | 재료 유형 / 유전 상수 |
|    | 저 교정점         |
|    | 고 교정점         |
|    | 제동            |
|    | 센서 모드         |

<표4>기본메뉴항목

#### 6.4.2 고급 설정

[고급 설정]을 선택하고 [ENT] 키를 눌러 옵션 인터페이스로 이동하세요. 목록은 다음과 같습니다. 레이더 작동 원리에 숙달된 전문 엔지니어가 이 작업을 수행하는 것이 좋습니다.

| 기본 | 옵션           |
|----|--------------|
|    | 비정상에코파       |
|    | 현재 출력기능      |
|    | 4/20mA 포인트레벨 |
|    | 거리오프셋        |
|    | 급식 및 배설 속도   |
|    | 고장 전류 출력     |
|    | 실패타이머        |
|    | 재설정          |
|    | 버스주소         |

<표5>

## 6.4.3 디스플레이

[디스플레이]에서 거리 단위/온도 단위/언어를 전환할 수 있습니다. 디스플레이를 선택하고 ENT 키를 누르면 다음 표와 같은 옵션 목록이 표시됩니다.

| 기본위치 | 주메뉴              | 하위메뉴                     |
|------|------------------|--------------------------|
| •    | Distance unit    | m/cm/mm/ft/in            |
|      | Temperature unit | °C/K                     |
|      | Language         | Chinese/English/Espanol1 |

<垂6>

#### 6.4.4 진단

[진단] 메뉴에는 기기의 과거 기록에 필요한 기능이 포함되어 있습니다. 현재 및 과거 데이 터의 통계를 검토할 수 있습니다.

| 기본<br>위치 | 메뉴       |
|----------|----------|
|          | 현재 시뮬레이션 |
|          | 최대 측정    |
|          | 역대 최고온도  |
|          | 채움비율     |
|          | 공실율      |

<표7> 진단을 위한 테이블 메뉴 항목

#### 6.4.5 정보

[정보]에는 다음 표와 같이 장치 자체에 대한 정보를 조회하는 옵션이 포함되어 있습니다

| 기본<br>위치 | 메뉴        |
|----------|-----------|
| •        | LCD 버전    |
|          | 메인 PCB 버전 |
|          | 센서 모델번호   |
|          | 일련번호      |
|          | 센서테그      |

<표8>정보메뉴항목



#### 6.5 메뉴옵션

#### 6.5.1 기본설정 메뉴

기본 설정을 통해 기기를 빠르게 시작할 수 있습니다. 레벨 미터의 전원이 켜지면 LCD가 측정 인터페이스로 전환됩니다. [ENT] 키를 눌러 [기본] 메뉴로 들어갑니다.

참고: 명시적으로 언급하지 않는 한 기본 설정은 별표(\*)로 표시됩니다.

#### 6.5.1.1 [선박 유형]

[기본 설정]으로 들어가서 [선박 유형]을 선택하고 [ENT]를 눌러 선박 목록으로 들어갑니다..

[진단] 메뉴에는 기기의 과거 기록에 필요한 기능이 포함되어 있습니다. 현재 및 과거 데이터의 통계를 검토할 수 있습니다.



<그림11> 선반유형개요

[선박 유형] 옵션은 아래 표를 기준으로 레이더 알고리즘에 영향을 미칩니다. [선박 유형]에 따라 자동으로 변경되는 주요 요소로는 충진/비움 속도, 감쇠 시간, 추적 상태가 있습니다

| 매개변수 이름 | 선박 유형                      |  |
|---------|----------------------------|--|
| 대용량     | 충전 속도: 0.1m/min 감쇠 시간: 60s |  |
| 중간 볼륨*  | 충전 속도: 1m/min 감쇠 시간: 10s   |  |
| 미세한 볼륨  | 충전 속도: 10m/min 감쇠 시간: 0s   |  |
| 데모      | 감쇠 시간: 0s                  |  |
| 스몰 블라인드 | 충전 속도: 1m/min 감쇠 시간: 10s   |  |

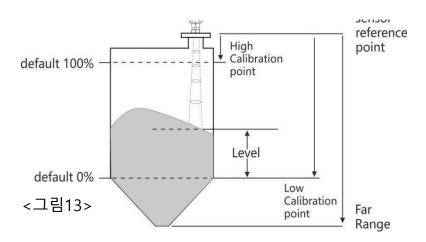
<표9> 선박 유형에 대한 세부 정보



#### 6.5.1.2 [재료 종류/유전율]



<그림12> 재료유형개요


매체 유형과 DK 값은 에코파 계산 알고리즘에 영향을 미치므로 실제 응용 프로그램에 맞게 설정해야 합니다.

| 재료 유형 | 유전율  |
|-------|------|
| 분말    | > 10 |
| 작은 고체 | 3-10 |
| 큰 고체  | <3   |

<표10> 재료 유형에 대한 세부정보

#### 6.5.1.3 [측정 범위]





[저교정점]("low cal."의 약자)은 범위 설정과 관련이 있습니다. 이 설정은 측정값과 전류출력(4-20mA) 간의 대응 관계를 [고교정점]("high cal."의 약자)과 함께 매핑합니다. [저교정점]에 대한 자세한 입력 제한과 [저교정점]과 [4mA/20mA 설정점] 간의 관계는 다음 표에 요약되어 있습니다.

| 매개변수 이름 | 낮은 교정점                                                                                                                                                                            |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 값 범위(m) | 1m ~ 전체 범위                                                                                                                                                                        |
| 기본값(m)  | 30 60 120                                                                                                                                                                         |
| 관련 매개변수 | <ul> <li>(1) [저교정점]이 ([고교정점]+0.5m) 미만이면 ([고교정점]+0.5m)로 설정</li> <li>(2) 레벨 모드에서는 저교정점 교정점을 변경하면 4mA 설정점이 자동으로 변경</li> <li>(3) 거리 모드에서는 저교정점 교정점을 변경하면 20mA 설정점이 자동으로 변경</li> </ul> |
| 옵션 의미   | (1) 레벨 모드에서는 [4mA 설정값]에 해당합니다.<br>(2) 거리 모드에서는 [20mA 설정값]에 해당합니다.                                                                                                                 |
| 메모      | (1) 원거리와는 관련이 없습니다.<br>(2) 실시간 값 및 전류 출력과 관련이 있습니다.                                                                                                                               |

<표11> 저 교정점에 대한 세부정보

# Solden Rales

# 80G FMCW 레이더 레벨 전송기



**[고교정점]**은 측정값과 전류 출력(4-20mA) 사이의 대응 관계를 [저교정점]과 매핑합니다. [고교정점]에 대한 자세한 입력 제한과 [고교정점]과 [4mA/20mA 설정점] 사이의 관계는 다음 표에 요약되어 있습니다.

| 매개변수 이름 | 높은 교정점                                                                                                                           |
|---------|----------------------------------------------------------------------------------------------------------------------------------|
| 값 범위(m) | 0 ~ (low cal0.5m)                                                                                                                |
| 기본값(m)  | 0                                                                                                                                |
| 관련 매개변수 | (1) [고교정점]이 [저교정점]-0.5m보다 크면 [저교정점]-0.5m로 설정<br>레벨 모드에서는 고교정점을 변경하면 20mA 설정점이 자동으로 변경<br>거리 모드에서는 고교정 교정점을 변경하면 4mA 설정점이 자동으로 변경 |
| 옵션 의미   | (1)레벨 모드에서는 [20mA 설정값]에 해당합니다.<br>(2)거리 모드에서는 [4mA 설정값]에 해당합니다.                                                                  |
| 특이사항    | (1)근거리와는 관련이 없습니다.<br>(2)실시간 값과 전류 출력에 영향을 미칩니다.                                                                                 |

<표12> 고교정점에 대한 세부정보

#### [측정범위 설정]

| 매개변수   | 범위                                                                                                      |      |       |  |  |
|--------|---------------------------------------------------------------------------------------------------------|------|-------|--|--|
| 값 범위 m | 1-30                                                                                                    | 1-60 | 1-120 |  |  |
| 기본     | 30m                                                                                                     | 60m  | 120m  |  |  |
| 관련 구성  | 1. 범위가 (데드 밴드+0.5m) 미만이면 범위는 자동으로 (데드 밴드+0.5m)로 설정됩니다. 2. 현재 기능 출력이 거리인 경우, 범위를 수정하면 4mA 값이 자동으로 변경됩니다. |      |       |  |  |



## 6.5.1.4 [댐핑 시간]

[댐핑]은 레벨의 급격한 변화에 대한 응답을 부드럽게 하는 댐핑 필터입니다. 예를 들어, 댐핑 시간이 2초일 때, 측정 레벨이 t 시점에 급격한 변화를 보이면 출력은 완만 한 변화를 보입니다. 처음 2초 안에 63%에 도달하고, 10초 안에 100%에 도달합니다. 댐핑 시간은 0~600초까지 설정할 수 있으며, 기본값은 60초입니다.

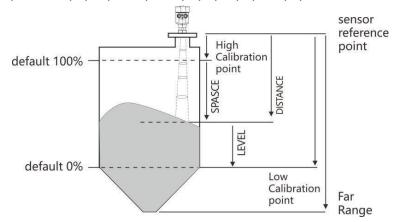


| 매개변수 이름    | Damping                       |
|------------|-------------------------------|
| 매개변수 범위(s) | 0~600                         |
| 기본값(s)     | 60                            |
| 관련 매개변수    | 무효                            |
| 옵션 의미      | 갑작스러운 레벨 변화에 대한 대응을 원활하게 합니다. |
| 특이사항       | 무효                            |

<표13> 댐핑에 대한 세부정보

#### 6.5.1.5 [데드밴드 설정]

[고급 설정]으로 들어가서 [데드밴드]를 선택하고 [ENT] 키를 눌러 데드밴드 편집 인터페이 스로 들어갑니다.


| 매개변수        | 데드밴드                                                                                    |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------|--|--|--|--|
| 매개변수 범위 (m) | 0~ ( range-0.5 )                                                                        |  |  |  |  |
| 기본 (m)      | 0.08 ( 0-30 )                                                                           |  |  |  |  |
| 구성          | 데드밴드 > (범위 -0.5m)이면 데드밴드 = (범위 - 0.5m)                                                  |  |  |  |  |
| 의미          | 신호 알고리즘 처리 시 사각지대에 있는 에코파를 무시하므로,<br>이 옵션을 사용하면 센서 근처의 간섭을 피할 수 있습니다.                   |  |  |  |  |
| 주의          | 이 데드 밴드는 근단 센서의 측정 한계가 아니며, 알고리즘 계산<br>영역을 지정하는 데에만 사용됩니다. 계측기 측정 한계는 기술<br>사양을 참조하십시오. |  |  |  |  |

#### 6.5.1.6 [센서 모드]



<그림15> 센서모드

[센서 모드] 현장 요구에 따라 측정 인터페이스의 거리 출력 유형을 선택하십시오. 주요 매개변수는 센서와 재료 레벨 사이의 거리입니다.



#### 6.5.2 [고급 설정]

# 6.5.2.1 데드밴드

#### 6.5.2.1.1 비정상에코 학습

컨테이너 내 알려진 장애물을 포함한 비정상 에코파를 학습할 수 있습니다. 또한 배경 잡음에 대한 스크리닝 곡선(임계값 곡선 TVT)을 형성합니다. 비정상 에코파를 추가하기 전에 [비정상 에코 모드]와 [비정상 에코 영역]을 설정해야 합니다.

#### 6.5.2.1.2 [비정상에코 영역]

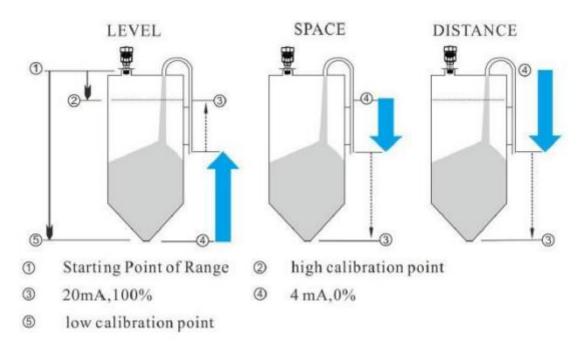
이 기능은 비정상 에코 학습 영역을 설정합니다. 비정상 에코 모드가 "선택 영역" 또는 "제외 영역"일 때 적용됩니다.

#### 6.5.2.1.3 [비정상 에코 모드]

비정상 에코 모드에는 전체 범위, 선택 영역, 제외 영역의 세 가지 옵션이 있습니다. 선택 영역과 제외 영역은 비정상 에코 영역 메뉴를 통해 설정해야 합니다. 이 기능은 다양한 범 위의 비정상 에코를 학습하거나 삭제하는 데 도움이 될 수 있습니다.



예를 들어, 기기로부터 2~4m 거리 내에 간섭 신호가 있는 경우, 간섭을 억제하기 위해 새로운 TVT 곡선을 생성해야 합니다. 방법은 다음과 같습니다.


- 1. 비정상 에코 모드에서 선택 영역을 정의합니다.
- 2. 비정상 에코 영역에서 2m부터 4m까지 영역을 설정합니다.

비정상 에코 학습 메뉴에서 "생성"을 선택하고 확인을 클릭한 후 "확인" 신호를 기다립니다. TVT 곡선이 성공적으로 생성되었음을 의미합니다.

아래 그림은 비정상 에코 학습을 적용한 경우와 적용하지 않은 경우의 차이를 보여줍니다. 학습 후 곡선이 실시간 측정 곡선을 완벽하게 포함하는 것을 확인할 수 있습니다. 따라서 실제 반사 에코만 남아 분석할 수 있습니다.

#### 6.5.2.2.[전류 함수]

[전류 함수]는 버스에서 4-20mA의 전류 출력을 결정합니다. 실시간 값, 전류 함수, 4/20mA 지점에 따라 선형 계산을 통해 이론적인 루프 전류 출력을 얻을 수 있습니다. 결과는 버스에 표시됩니다. 4mA 지점, 20mA 지점, Low 조정 지점, High 조정 지점 등 다양한 옵션에 따라 출력 관계는 그림과 같습니다.



<그림16>



# 6.5.2.3 [4/20mA 위치]

#### [4mA 설정값]

4mA 지점은 아날로그 양의 0% 위치입니다. 사용자는 실제 수요에 따라 지점 위치를 설정할 수 있습니다. 이 설정은 전류 출력 기능에서 제공하는 기본 대응값보다 우선합니다.

#### [20mA 설정값]

20mA 지점은 아날로그 양의 100% 위치입니다. 4mA와 동일한 기능입니다.

#### 6.5.2.4 .[거리 오프셋]

[거리 오프셋]은 실제 요구 사항에 따라 센서 기준점의 이동을 보정하는데 사용됩니다. 기본 기준점은 렌즈 지점 "a"의 앞쪽 끝으로 보정됩니다. 센서가 기준점을 "b"로 조정하려면 h1을 입력하고, "c"로 조정하려면 -h2를 입력합니다.



사용자가 음수 값을 입력하려면 커서를 상위 비트로 이동하고 UP 버튼을 눌러 음수 부호를 입력한 후 오른쪽으로 이동하여 데이터를 입력합니다. 마지막으로 ENT 버튼을 눌러 확 인합니다.

#### 6.5.2.5 [충전/배출 속도]

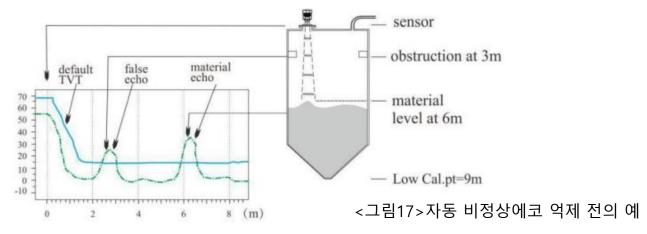
[충전 속도]는 실제 재료 레벨 증가에 따라 레벨 미터의 반응 속도를 조정하는 데 사용됩니다. 반응 속도는 충전 속도에 따라 자동으로 변경됩니다.

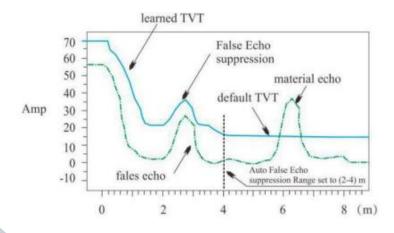
[배출 속도]는 충전 속도와 동일합니다.

#### 6.5.2.6 [고장 전류 출력]

[고장 전류 출력]은 계측기가 에코파를 찾지 못할 때 전류 값을 설정할 수 있습니다. 오류 코드는 부록 A를 참조하십시오.

#### 6.5.2.7 [고장 타이머]


에코 손실 타이머(LOE 타이머)라고도 합니다. 계측기가 지속적으로 고장을 일으키거나 파형 손실 시간이 [고장 타이머] 설정값을 초과하면 4-20mA 단자는 [고장 전류 출력] 설정값에 따라 값을 출력합니다. 기본값은 100초입니다.범위는 0~1000초입니다. [고급 설정]으로 이동하여 [고장 타이머]를 선택하십시오.


#### 6.5.2.8 [공장 초기화]

레벨 미터를 공장 초기화 상태로 복원하는 데 사용됩니다. 복구 시간은 약 15초에서 20초입니다. 그 후 LCD는 자동으로 측정 인터페이스로 이동합니다. 센서가 제대로 작동하지 않을 때 이 옵션을 사용하는 것이 좋습니다.

#### 6.5.2.9 [버스 주소]

[버스 주소]는 계측기에 주소를 할당하고 버스에서 여러 계측기가 정상적으로 작동하도록 하는 데 사용됩니다. 해당 프로토콜에 따라 버스 주소를 설정하십시오.





<그림18>자동 비정상에코 억제 후의 예



# 7. 메뉴 트리

## 7.1 첫 번째 레벨 메뉴 트리 뷰

Î

1.Basic setting

2.professional settings

3. display

4. diagnose

5. information

#### 7.2 보조 메뉴 트리-기본 설정

1. basic setting

1. 1 vessel type

Large tank/ medium tank/ thin&high tank
Demo / small tank

1.2 medium type

Solid liquid

1.3 measuring range

Low calibration / high calibration Range set

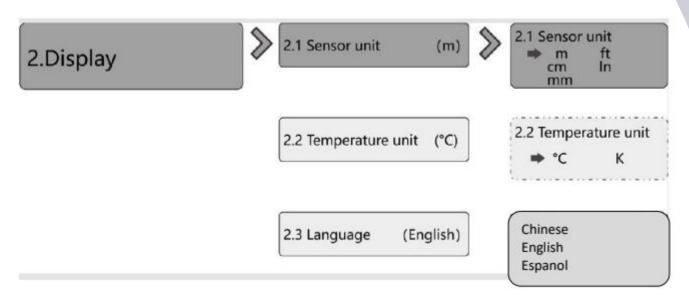
1.4 damping time

25

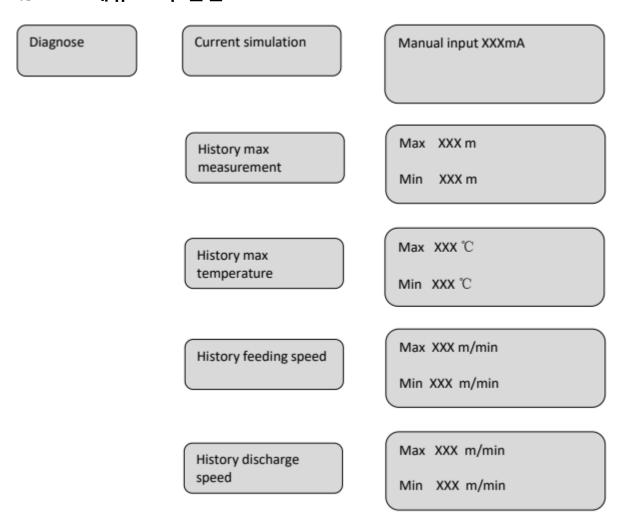
1.5 dead band set

Dead band set

1. 6measuring mode

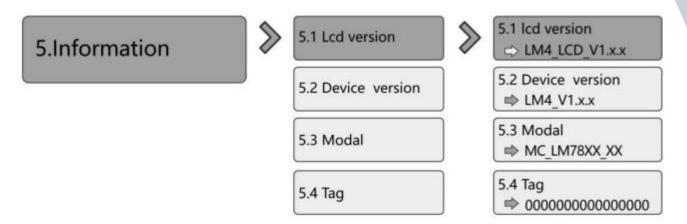

Level of material / space / distance

# 7.3 보조 메뉴 트리-고급 설정


| Professional setting False echo wave | False echo wave learning  |
|--------------------------------------|---------------------------|
|                                      | False echo wave area      |
|                                      | False echo wave mode      |
| Current output functi                | Level space distance      |
| 4/20mA position                      | 4mA position XXX m        |
|                                      | 20mA position XXX m       |
| Distance offset                      | 0.000 m                   |
| Feeding/discharge spec               | Feeding speed 0.20m/min   |
|                                      | Discharge speed 0.20m/min |
| Failure current output               | 21mA hold                 |
| Failure timer                        | 100s                      |
| reset                                | No yes                    |
| Bus address                          | Modbus hart 1 0           |



#### 7.4 보조 메뉴 트리-디스플레이




#### 7.5 보조 메뉴 트리-진단





#### 7.6 보조 메뉴-트리 정보



# 8. 선택

DAR-80 | | | | | | | | | | |

| 단위       | 코드 | 매개변수                          |
|----------|----|-------------------------------|
| o 성      | Р  | 표준                            |
| 유형       | F  | 방염                            |
|          | L  | 알루미늄합금/IP68                   |
| 하우징/보호등급 | G  | 알루미늄합금 이중챔버/IP67              |
|          | Υ  | 특수용어                          |
| 연결       | G  | 나사산 G1.5                      |
| [ 22<br> | Υ  | 특수용어                          |
|          | 2  | 2선식(4~20)mA 24VDC/HART        |
| <br>  전자 | 3  | 4선식(4~20)mA 220V AC           |
| [ 전시<br> | 4  | 4선식 RS485 Modbus-RTU+(4~20)mA |
|          | Υ  | 특수용어                          |
| 케이블인렛    | М  | M20*1.5                       |
| 게이글인것    | N  | NPT1/2                        |
|          | L  | 액체                            |
| 재료유형     | S  | 고체                            |
|          | D  | 분말                            |
|          | 1  | (0~30)m                       |
| 범위       | 2  | (0~60)m                       |
|          | 3  | (0~120)m                      |
| 특수용어     | Υ  | 특수용어                          |



#### DAR-81 | | | | | | | | | |

| 단위        | 코드 | 매개변수                          |  |  |
|-----------|----|-------------------------------|--|--|
| 유형        | Р  | 표준                            |  |  |
| π ö       | F  | 방염                            |  |  |
|           | L  | 알루미늄합금/IP68                   |  |  |
| 하우징/보호등급  | G  | 알루미늄합금 이중챔버/IP67              |  |  |
|           | Υ  | 특수용어                          |  |  |
| 아테니아성     | 1  | 렌즈/PTFE                       |  |  |
| 안테나유형     | 3  | 부식방지                          |  |  |
|           | G  | 나사산 G3.5                      |  |  |
|           | В  | 플랜지 DN80 PN10                 |  |  |
| <br>  연결  | L  | 플랜지 DN80 PN10 범용형             |  |  |
| [ 건설<br>  | С  | 플랜지 DN100 PN10                |  |  |
|           | K  | 플랜지 DN100 PN10 범용형            |  |  |
|           | Υ  | 특수용어                          |  |  |
|           | 2  | 2선식(4~20)mA 24VDC/HART        |  |  |
| <br>  전자  | 3  | 4선식(4~20)mA 220V AC           |  |  |
| [ 전시<br>  | 4  | 4선식 RS485 Modbus-RTU+(4~20)mA |  |  |
|           | Υ  | 특수용어                          |  |  |
| 케이블인렛     | М  | M20*1.5                       |  |  |
| 게이글한것<br> | N  | NPT1/2                        |  |  |
|           | L  | 액체                            |  |  |
| 재료유형      | S  | 고체                            |  |  |
|           | D  | 분말                            |  |  |
|           | 1  | (0~30)m                       |  |  |
| 범위        | 2  | (0~60)m                       |  |  |
|           | 3  | (0~120)m                      |  |  |
| 특수용어      | Υ  | 특수용어                          |  |  |



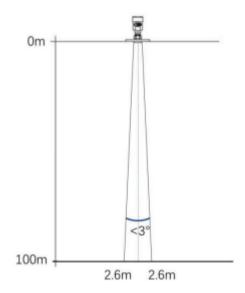
#### DAR-82 | | | | | | | | | | |

| 단위         | 코드 | 매개변수                          |
|------------|----|-------------------------------|
| 유형         | Р  | 표준                            |
| πδ<br>     | F  | 방염                            |
|            | L  | 알루미늄합금/IP68                   |
| 하우징/보호등급   | G  | 알루미늄합금 이중챔버/IP67              |
|            | Y  | 특수용어                          |
| 아테니아성      | С  | 플랜지,DN80 PN25                 |
| 안테나유형      | Y  | 특수용어                          |
|            | 2  | 2선식(4~20)mA 24VDC/HART        |
| <br>  전자   | 3  | 4선식(4~20)mA 220V AC           |
| 신<br>신<br> | 4  | 4선식 RS485 Modbus-RTU+(4~20)mA |
|            | Y  | 특수용어                          |
| 케이블인렛      | М  | M20*1.5                       |
| 게이글한것<br>  | N  | NPT1/2                        |
|            | L  | 액체                            |
| 재료유형       | S  | 고체                            |
|            | D  | 분말                            |
| 범위         | 1  | (0~30)m                       |
| 古刊         | 2  | (0~60)m                       |
| 온도         | T0 | -40~120°C                     |
| 亡工<br>     | T1 | -40~600°C                     |
| 압력         | P0 | -0.1~2Mpa                     |
| 납탁         | P1 | -0.1~20Mpa(정상온도)              |
| 특수용어       | Υ  | 특수용어                          |



# DAR-8S □□□□□□□(최대범위 10M)

| 단위         | 코드 | 매개변수                   |
|------------|----|------------------------|
| 유형         | Р  | 표준                     |
| πδ         | F  | 방염                     |
|            | L  | 알루미늄합금/IP68            |
| 하우징/보호등급   | G  | 알루미늄합금 이중챔버/IP67       |
|            | Υ  | 특수용어                   |
|            | 1  | 렌즈/PTFE G1.5           |
| 안테나유형      | 2  | 렌즈/PTFE G3.5           |
|            | 3  | 부식방지                   |
|            | F  | 스레드 G1.5               |
|            | G  | 스레드 G3.5               |
| 프로세스 연결    | В  | 플랜지 DN80 PN10          |
|            | С  | 플랜지 DN100 PN10         |
|            | Υ  | 특수용어                   |
|            | 2  | 2선식(4~20)mA 24VDC/HART |
| 전자         | 3  | 4선식(4~20)mA 220V AC    |
|            | Υ  | 특수용어                   |
| 케이블인렛      | М  | M20*1.5                |
| /비익글건갯<br> | N  | NPT1/2                 |
| 재료유형       | L  | 액체                     |
| 특수용어       | Υ  | 특수용어                   |


# 9. 부록 A : 오류 코드

| 0000 | 정상작동               |
|------|--------------------|
| 0001 | 범위내에서 에코 미발견       |
| 0002 | TR과의 비정상적인 통신      |
| 0003 | 비정상적인 통신 및 에코파 미발견 |



#### 10. 부록 B: 용어

빔 각도: 절반 전력 빔 폭. HCDAR-8X 시리즈의 최소 빔 각도는 3°입니다.



거리 분해능: 레벨 레이더가 두 물체를 구별할 수 있는 최소 거리를 나타냅니다. LM78xx는 5.1GHz 대역폭을 가지고 있으므로 이상적인 거리 분해능은 C/2B≈3cm입니다.

축정 정확도: 레벨 레이더가 구별할 수 있는 최소 편차입니다. HCDAR-8X의 에코 신호는 고유한 알고리즘으로 분석되며 정확도는 0.1mm입니다.

교반기: 탱크 내 구성품을 혼합하는 데 사용되는 장치입니다. 변동을 일으킬 수 있습니다.

주변 온도: 장비와 접촉하는 주변 공기의 온도입니다.

**사각 지대**: 레벨 미터의 한계, 즉 레이더가 사각 지대 내에서 정확한 측정 결과를 제공할 수 없는 것입니다.

dB(데시벨): 신호의 진폭을 나타내는 단위입니다.

유전율(DK): 유전체가 전기 에너지를 저장하는 능력입니다. 유전율의 증가는 반사 진폭의 증가에 정비례합니다. 공기의 유전율은 1입니다.

**에코**: 특정 방법으로 송신 신호와 구별할 수 있을 만큼 진폭이 큰 반사 신호를 에코라고 합니다.

비정상 에코: 실제 표적의 에코가 아닌 에코. 일반적으로 비정상 에코는 용기 내 장애물에 의해 생성됩니다.

다중 에코: 레이더와 표적 사이의 다중 반사로 인한 다중 에코.

**편광**: 방출된 전자기파의 특성으로, 시간에 따른 전기장 벡터 변화의 방향과 진폭을 설명합니다.

**반복성**: 동일한 상황에서 동일한 변수를 여러 번 측정했을 때의 분산.

**빛의 속도**: 자유 공간에서 전자기파의 속도는 초당 299,792,458미터입니다.

# www.goldenrules.co.kr

# 기체 & 액체 & 스팀용질량유량계 & 계측기 전문 제조

| 전국 대리점 |  |   |
|--------|--|---|
|        |  |   |
|        |  |   |
|        |  |   |
|        |  |   |
|        |  |   |
|        |  | , |

Certified in accordance with

KC Q ISO 9001: 2015

KC Q ISO 14001: 2015

032-817-1240 goldenrules2014@naver.com 인천 연수구 송도미래로30 A-1805(송도스마트밸리)

